Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
IFMINUS(false, s(X), Y) → MINUS(X, Y)
MINUS(s(X), Y) → LE(s(X), Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
LE(s(X), s(Y)) → LE(X, Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
IFMINUS(false, s(X), Y) → MINUS(X, Y)
MINUS(s(X), Y) → LE(s(X), Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
LE(s(X), s(Y)) → LE(X, Y)
QUOT(s(X), s(Y)) → MINUS(X, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(X), s(Y)) → LE(X, Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LE(s(X), s(Y)) → LE(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(s(x1)) = 4 + (2)x_1   
POL(LE(x1, x2)) = (3)x_2   
The value of delta used in the strict ordering is 12.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IFMINUS(false, s(X), Y) → MINUS(X, Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IFMINUS(false, s(X), Y) → MINUS(X, Y)
MINUS(s(X), Y) → IFMINUS(le(s(X), Y), s(X), Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(IFMINUS(x1, x2, x3)) = 2 + (2)x_2 + (4)x_3   
POL(le(x1, x2)) = 3 + x_1 + (3)x_2   
POL(true) = 2   
POL(false) = 2   
POL(MINUS(x1, x2)) = 3 + (2)x_1 + (4)x_2   
POL(s(x1)) = 3 + x_1   
POL(0) = 1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))

The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


QUOT(s(X), s(Y)) → QUOT(minus(X, Y), s(Y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(minus(x1, x2)) = 7/4 + (2)x_1   
POL(ifMinus(x1, x2, x3)) = 1/2 + (2)x_2   
POL(QUOT(x1, x2)) = (2)x_1   
POL(le(x1, x2)) = 0   
POL(true) = 2   
POL(false) = 0   
POL(s(x1)) = 15/4 + (2)x_1   
POL(0) = 3/2   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

le(0, Y) → true
le(s(X), 0) → false
le(s(X), s(Y)) → le(X, Y)
minus(0, Y) → 0
minus(s(X), Y) → ifMinus(le(s(X), Y), s(X), Y)
ifMinus(true, s(X), Y) → 0
ifMinus(false, s(X), Y) → s(minus(X, Y))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(minus(X, Y), s(Y)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.